2020 ICPC Asia Taiwan Online Programming Contest
日期：109 年 10 月 07 日 星期三 18：00～21：00 数室：SEC506

2020 ICPC Asia Taiwan Online Programming Contest
日期：109 年 10 月 07 日 星期三 18：00～21：00 数室：SEC506

䐺ANS
programming tools sponsor

Problem A
 Pac-Man

Time limit: 1 second
Memory limit: 1024 megabytes

Problem Description

Pac-Man is a maze-chase video game developed in 1980s. The player controls the character "Pac-Man" to eat dots in a maze while avoiding enemy characters "ghosts." All characters may move in four directions: up, down, left, right. The game ends when one of the following two conditions is met:

1. Pac-Man eats all dots in the maze. In this case, the player wins.
2. A ghost catches Pac-Man. In this case, the player loses.

Figure 1: Pac-Man gameplay (image from Wikipedia)

Adam is learning how to create games with modern programming tools. To practice the skills, he tries to reproduce the Pac-Man game with some modification. In Adam's game, the playable character is a "ghost," and the enemy character is "Pac-Man." Since he changes the roles of the ghost and Pac-Man, he also changes the ending conditions of the game.

1. Pac-Man eats all dots in the maze. In this case, the player loses.
2. The ghost controlled by the player catches Pac-Man. In this case, the player wins.

Adam has almost developed the first full functioning version of his game. He wants to test his game and creates a simple stage for testing. The maze of the stage is based on a 10 -by-10 grid. We label the cell at the intersection of row r and column c with (r, c). In this problem, rows and columns are numbered from 0 to 9 . Each grid cell contains exact one dot. The exterior boundary of the grid are walls. No characters may move to the area outside of the grid. Inside the grid, there are no walls or obstacles. All characters may move freely from a cell to any cell adjacent to it. Note that two grid cells $\left(r_{1}, c_{1}\right)$ and $\left(r_{2}, c_{2}\right)$ are adjacent to each other if and only if $\left|r_{1}-r_{2}\right|+\left|c_{1}-c_{2}\right|=1$.

Adam has to prepare the movements of Pac-Man for the testing. He needs a set of Pac-Man's trajectories with diversity, but any trajectory must satisfy the following requirements.

- Pac-Man eats all dots in the maze if it follows the trajectory.
- Pac-Man moves at most 10000 steps.

Adam needs your help to generate a trajectory starting at cell (x, y). Please write a program to generate a trajectory of Pac-Man satisfying all requirements above and starting at cell (x, y).

Input Format

The input has exactly one line which consists of two space-separated integers x and y. You are asked to generate a trajectory starting at cell (x, y).

Output Format

You must output a requested trajectory in the following format:
The trajectory is represented by $m+1$ lines where m is the number of steps of the trajectory. The i-th line contains two integers r_{i} and c_{i} separated by exactly one space. The trajectory starts at the cell $\left(r_{1}, c_{1}\right)$, and Pac-Man will be in cell $\left(r_{i}, c_{i}\right)$ after moving $i-1$ steps along the trajectory for $1<i \leq m+1$.

Technical Specification

- $m \leq 10000$
- $x, y, r_{i}, c_{i} \in\{0,1,2,3,4,5,6,7,8,9\}$ for all $i \in\{1,2, \ldots, m+1\}$.
- Cells $\left(r_{i}, c_{i}\right)$ and $\left(r_{i+1}, c_{i+1}\right)$ are adjacent to each other for all $i \in\{1,2, \ldots, m\}$.
- $\left\{\left(r_{1}, c_{1}\right)\right\} \cup\left\{\left(r_{2}, c_{2}\right)\right\} \cup \cdots \cup\left\{\left(r_{m+1}, c_{m+1}\right)\right\}=\{(r, c): r \in\{0,1, \ldots, 9\}, c \in\{0,1, \ldots, 9\}\}$
- If there are multiple solutions, then you may output any of them.

Sample Input 1

Sample Output 1

Note

The sample output section does not contain the correct output, since it ignores a large part of the answer. Please download the correct sample test cases from the judge system. tools sponsor

2020 ICPC Taiwan Online Programming Contest

Problem B

Folding
Time limit: 2 seconds
Memory limit: 1024 megabytes

Problem Description

There is a transparent tape. Its length is exact one meter (10^{9} nanometers). In this problem, all numbers are integers, and we use a number to denote a position on the tape. The number p denote the position of the point has a distance p nanometers from the head of the tape.

Bob is a master dyer, so he can color the tape precisely in nanometer scale. He colors two sectors $\left[p_{1}, q_{1}\right]$ and $\left[p_{2}, q_{2}\right]$ into red. The color of the tape within the range between p_{1} and q_{1} is red. The color of the tape within the range between p_{2} and q_{2} is also red. And the rest parts of the tape remain transparent.

To verify Bob's skill, we ask Ben, the tape folding master, to help us. Ben can fold the tape perfectly at any position. If Ben fold the tape at x, then the new position of a certain point p will be one of the following cases.

- If $p=x$, then it becomes the new head of the tape, i.e, it becomes 0 .
- If $p>x$, then it becomes $p-x$.
- If $p<x$, then it becomes $x-p$.

After Ben folds the tape, we measure the total length of the red part of the new tape. If the red part has the expected length, then we will believe Bob and Ben are both masters in their skills. Obviously, the color of some position of the new tape is determined by the colors of the corresponding positions of the old tape. A position of the new tape is colored in red if one of the corresponding positions in the old tape is colored in red.

Bob has already colored the tape, and Ben has proposed the positions to be folded. Please write a program to compute the expected lengths colored in red.

Input Format

The first line contains four space-separated integers p_{1}, q_{1}, p_{2} and q_{2}. Bob has colored the sectors $\left[p_{1}, q_{1}\right]$ and $\left[p_{2}, q_{2}\right]$. The second line contains an integer q indicating that Ben has made q proposals. Each of the remaining q lines contains an integer x indicating the positions to be folded by Ben. Note that the q proposals are independent to each other. There is only one folding point in one proposal.

Output Format

For each position, output the expected total length of the new tape that are colored in red.

Technical Specification

- $0 \leq p_{1}<q_{1}<p_{2}<q_{2} \leq 10^{9}$
- $0 \leq x \leq 10^{9}$
- $q \leq 10^{6}$

Sample Input 1
 Sample Output 1

	1389
	10
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

3
2
3
3
2
3
3
3
3
3

Problem C
 Circles

Time limit: 8 seconds
Memory limit: 1024 megabytes

Problem Description

There are n magical circles on a plane. They are centered at $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$, respectively. In the beginning, the radius of each circle is 0 , and the radii of all magical circles will grow at the same rate. When a magical circle touches another, then it stops growing. Write a program to calculate the total area of all magical circles at the end of growing.

Input Format

The first line contains an integer n to indicate the number of magical circles. The i-th of the following n lines contains two space-separated integers x_{i} and y_{i} indicating that the i-th magical circle is centered at $\left(x_{i}, y_{i}\right)$.

Output Format

Output the total area of the circles.

Technical Specification

- $2 \leq n \leq 2000$
- $x_{i}, y_{i} \in\left[-10^{9}, 10^{9}\right]$ for $i \in\{1,2, \ldots, n\}$.
- All $\left(x_{i}, y_{i}\right)$'s are disinct points.
- A relative error of 10^{-6} is acceptable.

Sample Input $1 \quad$ Sample Output 1

```
4
0
1 0
1 1
0 1
```


Sample Input 2

3

Sample Output 2

8.639379797371932

00
01
20

```
3. 14159265359
```

Almost blank page tools sponsor

2020 ICPC Taiwan Online Programming Contest

Problem D
 Last Will

Time limit: 1 second
Memory limit: 1024 megabytes

Problem Description

David is a farmer and has a large farm. The shape of the farm is a square. A sqaure is a quadrilaterial that has four equal sides and four equal angles. The length of any side of David's farm is one kilometer, so the area of his farm is slightly greater than the total area of 140 standard football fields.

David is old and very ill. He feels that his days are numbered. Worrying that his spouse Dora and their three children, Alice, Bob, and Cliff, will have a dispute over the ownership of the farm after he passes away, he plans to divide the farm into four parts, and then to allocate each part to one of his family members. He decides to write his last will as follows.

1. Assume that the shape of the farm is a sqaure $A B C D$ where $A=(0,0), B=(1,0)$, $C=(1,1), D=(0,1)$.
2. Let $E=(0.5,0), F=(1,0.5), G=(0.5,1), H=(0,0.5)$ be the midpoints of $\overline{A B}, \overline{B C}$, $\overline{C D}, \overline{D A}$, respectively.
3. Let $\operatorname{area}(P R Q S)$ to denote the area of the quadrilaterial $P Q R S$.
4. Please find a point X strictly inside the square $A B C D$ such that

$$
\operatorname{area}(A E X H): \operatorname{area}(B F X E): \operatorname{area}(C G X F)=p: q: r
$$

Note that X cannot be on the boundary of the square $A B C D$.
5. Allocate the land in $A E X H, B F X E, C G X F, D H X G$ to Alice, Bob, Cliff and Dora, respectively.

David is still adjusting the numbers p, q, r, and his lawyer, Reed, has to read David's last will carefully. Reed finds that it is impossible to find such point X if David gives an improper set of the numbers such as $p=1, q=2, r=1$. However, there are proper sets of the numbers p, q, r that allow us to find the point X satisfying David's last will. For instance, let $p: q: r=2: 3: 2$, the following figure shows a possible position of X.

Figure 2: $\operatorname{area}(A E X H): \operatorname{area}(B F X E): \operatorname{area}(C G X F)=2: 3: 2$

Please write a program to help Reed to determine whether it is possible to find a point X satisfying David's last will for a given set of numbers p, q, r. If possible, please output one possible position of X to Reed.

Input Format

The input contains one line only. The line contains three space-separated positive integers p, q, r.

Output Format

If there does not exist a point X satisfying David's last will, then output -1 . Otherwise, output two irreducible fractions x and y such that (x, y) can be the point X satisfying David's last will. You must output an irreducible fraction $t=\frac{n}{d}$ as n / d with a positive denominator and use exactly one space to separate x and y.

Note: the numerator and the denominator of any irreducible fraction are integers and do not have common divisors other than 1 and -1 .

Technical Specification

- $p, q, r \in\left\{1,2, \ldots, 10^{6}\right\}$

Sample Input 1
Sample Output 1
111
$1 / 2 \quad 1 / 2$

Sample Input 2
Sample Output 2
121

Sample Input 3

232

Sample Output 3
$1 / 4 \quad 3 / 4$

Problem E
 Eric's Work

Time limit: 5 seconds

Memory limit: 1024 megabytes

Problem Description

A binary string is a string consisting of only 0's and 1's. Elsa, Eric's boss, gave him a binary string s of length 20 and asked him to modify s into another binary string t within D days.

Eric really hates this task and therefore never modifies more than one character in a day. However, being forced to show Elsa the daily progress, Eric must modify some characters of the string every day. That means, the only possible way for Eric is to modify exact one character in each day before he finishes the task.

It is obviously cheating to have a character changed to something other than 0 and 1. Moreover, Eric will be caught cheating if the string is modified into the same binary string twice since Elsa has a good memory. That is, before the string is modified into t, all modifications result in unique strings. Note that Eric cannot modify the string into s which is the string given by Elsa, either.

Eric wants to spend as much time as possible. He is wondering if he can spend exact D days to have the string s modified into t. Please write a program to help Eric.

Input Format

The input contains three lines. The first line contains a binary string s. The second line contains a binary string t. The third line contains an integer D. Elsa asked Eric to modify the binary string s into t within D days.

Output Format

If there is no way to achieve what Eric wants, output -1 . Otherwise, output D lines to represent one possible way. The i-th line contains a binary string, the result of the modification on the i-th day.

Technical Specification

- The strings s and t consist of only 0 's and 1 's.
- The length of s and the length of t are both 20 .
- $1 \leq D \leq 500000$
- If there are multiple solutions, then you may output any of them.

2020 ICPC Taiwan Online Programming Contest

Sample Input 1
00000000000000000000
11111111111111111111
5
Sample Input 2

```
000000000011111111111
100000000011111111111
5
```


Sample Output 1

-1

Sample Output 2

 tools sponsor2020 ICPC Taiwan Online Programming Contest

Problem F Homework

Time limit: 3 seconds
Memory limit: 1024 megabytes

Problem Description

There are n children (numbered from 1 to n) learning the arithmetic operations, which include addition "+", subtraction "-", multiplication " \times ", and division " \div " on rational numbers.

In the beginning, each child has a paper sheet with only a zero on it. Their teacher, Frank, will then give them q operations. The i-th operation consists of an operator c_{i} and an integer x_{i}. The children numbered $\ell_{i}, \ell_{i}+1, \ldots, r_{i}$ have to append the operator c_{i} and the integer x_{i} to their paper sheets. After that, every child has an expression on their sheet to be evaluated.

For example, suppose that $n=3, q=2, c_{1}$ is " + ", $x_{1}=1, \ell_{1}=1, r_{1}=2, c_{2}$ is " - ", $x_{2}=2$, $\ell_{2}=2$, and $r_{2}=3$. The expressions on the sheets are are $0+1,0+1-2$ and $0-2$ for children 1,2 and 3 , respectively.

Since Frank is really lazy and wants to verify the answers quickly, he asks you to calculate the sums of the values of all children's expressions. Suppose that the value of the expression assigned to child i is $\frac{a_{i}}{b_{i}}$, then the value will be $a \times b^{-1} \bmod 10^{9}+7$ instead, where b^{-1} denotes the integer satisfying $b \times b^{-1} \equiv 1 \bmod 10^{9}+7$. If the sum is not in $\left[0,10^{9}+7\right)$, then the sum modulo $10^{9}+7$ should be returned to Frank.

Note: The arithmetic operations has PEMDAS rule, that is, multiplications and divisions should be evaluated before evaluating additions and subtraction.

Input Format

The first line consists of two space-separated integers n and q. The i-th of the following q lines consists of four space-separated tokens $\ell_{i}, r_{i}, c_{i}, x_{i}$. For the sake of convenience, $*$ and $/$ are used to represent the multiplication and the division operators, respectively.

Output Format

Output the number that you should return to Frank.

Technical Specification

- $1 \leq n \leq 10^{5}$
- $1 \leq q \leq 10^{5}$
- $\ell_{i}, r_{i} \in[1, n]$ for all $1 \leq i \leq q$.
- $c_{i} \in\{+,-, *, /\}$ for all $1 \leq i \leq q$.
- For all $1 \leq i \leq q, x_{i}=0$ implies that c_{i} is not $/$.
- $x_{i} \in\left[0,10^{9}+7\right)$ for all $1 \leq i \leq q$.
icpo
International Collegiate
Programming Contest
E

2020 ICPC Taiwan Online Programming Contest
Sample Input 1
Sample Output 1
32
1000000005
$12+1$
$23-2$
icpc.foundation

Problem G
 Garden

Time limit: 10 seconds
Memory limit: 1024 megabytes

Problem Description

There is a rectangle garden in front of Gina's house. The garden can be seen as an n-by- m rectangular grid. All grid cells are identical squares, and two grid cells are considered adjacent if they share an common edge.

Gina loves cacti and wants to plant as many cacti as possible in the garden. However, there are some constraints on planting cacti.

- The soil can be too wet in some of the cells and therefore is not suitable for cacti. Gina cannot plant cacti in those cells.
- Since the soil in each cell is not fertile enough to grow two or more cacti, Gina may plant at most one cactus in a cell.
- At most one cactus can be planted in any pair of adjacent cells. Otherwise, the cacti in those cells may be harmed by their neighbor's thorns.

Please write a program to help Gina calculate the maximum possible number of cacti can be planted, and also a way of plantings that meet the listed constraints.

Input Format

The first line contains two space-separated integers n and m meaning the garden is an n-by- m grid. Then, each of the following n lines contains a string of m characters. These characters are either '.' or ' $*$ '. The j-th character of the i-th of these lines indicates whether the soil in the grid cell on the i-th row and the j-th column is suitable for planting a cactus. '.' means it is suitable, and ' $*$ ' means it is not suitable.

Output Format

First, output the maximum possible number of cacti on the first line. Then, output n lines, each line containing a string of m characters. Each of the characters must be one of '.', '*' and ' C '. The j-th character of the i-th of these lines indicates the status of the grid cell on the i-th row and the j-th column. A ' C ' means a cactus should be planted in that particular cell, and the other cells should be identical to the corresponding position of the input.

Technical Specification

- $1 \leq n m \leq 10^{5}$
- If there are more than one possible way of planting, any of them will be accepted.

International Collegiate
Programming Contest

programming tools sponsor

2020 ICPC Taiwan Online Programming Contest

Problem H In The Name Of Confusion

Time limit: 2 seconds
Memory limit: 1024 megabytes

Problem Description

There's no such thing as public opinion.

Jordan Ellenberg, American
Mathematician

In K City lives n residents who want to build a connection network with each other. However, some residents want the network wires colored black while the others want the wires colored white. The opinion of resident i can be quantified as a number a_{i}. If we build a network wire between residents i and j, the cost of this wire will be $a_{i} \times a_{j}$.

The mayor of K City wants to build a network such that:

1. There are exactly $n-1$ wires used.
2. For any two different residents i and j, there exists a sequence p_{1}, \cdots, p_{k} such that $p_{1}=i$, $p_{k}=j$ and residents p_{ℓ} and $p_{\ell+1}$ share a wire for $1 \leq \ell<k$.

In other words, the network should be a tree.
You, the renowned mathematician of K City, want to know not only the minimum cost to build the network. In the name of confusion, you also want to know the maximum cost!

Input Format

The first line begins with a number n indicating the number of residents. The second line contains n numbers $a_{1}, a_{2}, \ldots, a_{n}$. The opinion of resident i is the quantified as a_{i}.

Output Format

Output two numbers separated by a blank in a line. The numbers are the minimum cost and the maximum cost to build the network, respectively. Since the absolute value of the costs may be extremely large, you have to modulo the answer with $10^{9}+7$. Please note that the modulo of a number (defined by Donald Knuth) is $a \bmod b=a-b\left\lfloor\frac{a}{b}\right\rfloor$. The output number should be non-negetive.

Technical Specification

- $1 \leq n \leq 10^{6}$
- $\left|a_{i}\right| \leq 10^{6}$

Sample Input 1
10 Sample Output 1

```
58490
```

$\begin{array}{llllllllll}-5 & -10 & -7 & -7 & -3 & -1 & -7 & -5 & -8 & -6\end{array}$

Sample Input 2

Sample Output 2
10
999999779183
$\begin{array}{llllllllll}-5 & 1 & 2 & -2 & -1 & 1 & -5 & 5 & -10 & 6\end{array}$

Sample Input 3

Sample Output 3
10
00
0000000000
Sample Input 4
Sample Output 4

10									
10	8	9	3	8	8	0	5	3	10

Problem I
 Site Score

Time limit: 1 second
Memory limit: 1024 megabytes

Problem Description

Teams from variaous universities compete in ICPC regional contests for tickets to the ICPC World Finals. The number of tickets allocated to every regional contest may be different. The allocation method in our super region, Asia Pacific, is based on a parameter called site score.

Site scores will only count teams and universities solving at least one problem, in the regional contest or its preliminary contest TOPC. In 2020, the formula for calculating the site score of the Taipei-Hsinchu regional contest is much simpler than past years. Let

- U_{R} be the number of universities solving at least one problem in the regional contest.
- T_{R} be the number of teams solving at least one problem in the regional contest.
- U_{O} be the number of universities solving at least one problem in TOPC.
- T_{O} be the number of teams solving at least one problem in TOPC.

The site score of 2020 Taipei-Hsinchu regional contest will be $56 U_{R}+24 T_{R}+14 U_{O}+6 T_{O}$. Please write a program to compute the site score of the 2020 Taipei-Hsinchu regional contest.

Input Format

The input has only one line containing four blank-separated positive integers U_{R}, T_{R}, U_{O}, and T_{O}.

Output Format

Output the site score of the 2020 Taipei-Hsinchu regional contest.

Technical Specification

- $0<U_{R} \leq T_{R} \leq 120$
- $0<U_{O} \leq T_{O} \leq 1000$

Note

The problem statement is fiction. The real site score has a different formula.

Almost blank page
icpc.foundation tools sponsor

2020 ICPC Taiwan Online Programming Contest

Problem J
 Table Tennis

Time limit: 5 seconds
Memory limit: 1024 megabytes

Problem Description

Alex is attending the first edition of Robotic World Championship of Table Tennis. A competition that have all of the matches having the same rules listed below:

- A match shall consist of the best of 7 games, i.e., the results of matches must be 4 games to k, where $0 \leq k \leq 3$.
- A game shall be won by the player first scoring 11 points unless both players score 10 points, when the game shall be won by the first player subsequently gaining a lead of 2 points. For example, a game can be won at scores like 11-5, 11-9 or 12-10, but not 10-5 or 11-10.
- After each 2 points have been scored the receiving player shall become the serving player and so on until the end of the game, unless both players score 10 points, when the sequences of serving and receiving shall be the same but each player shall serve for only 1 point in turn. That is, the servicing order of the first 20 points is AABBAABBAABBAABBAABB, and will be followed by ABABAB. . . if necessary.
- The player serving first in a game shall receive first in the next game of the match.

Experience tells that when two robots clashes into each other, the variances affecting their winning chances can be simplified to who's serving for the point. This is due to the performances of the robots are physically consistent and won't be affected mentally.

Alex have listed some of the possible matchups, simplified to the winning chance of each servicing point of the robots, for you. Now it is your job to help him calculate the winning chance of each match for them.

Input Format

The first line of the input consists of a single number T, indicating that there will be T test cases following.

Each of the following test case consists of two space-separated real numbers P_{A} and P_{B} in one line, where P_{A} denotes the Robot A's chance of winning the point when A is serving and P_{B} denotes the Robot B's chance of winning the point when B is serving.

The Robot A always serves first in the very first game of the match.

Output Format

For each test case, output one real number in one line: the winning chance of A .

Technical Specification

- $T \leq 100$
- $0 \leq P_{A} \leq 1$ and has at most 2 digits after the decimal point in the input.
- $0 \leq P_{B} \leq 1$ and has at most 2 digits after the decimal point in the input.
- $0<P_{A}+P_{B}<2$
- The answer will be considered correct if it is within an absolute error of 10^{-8} of the correct answer.

Sample Input 1
3 1 0 0.5 0.5 0.00 1.00

Sample Output 1

1
0.5
0.000000000

References

The rules are revised from the Chapter 2 "The Laws of Table Tennis" of The International Table Tennis Federation (ITTF) Handbook 2020.

7 Filter

RAN		TEAM		ORE	A	B	C	D	E	F	G	H	I	J
1	\bigcirc	2020 TOPC BBQube	10	947	$\begin{aligned} & 20 \\ & 1 \text { try } \end{aligned}$	$\begin{gathered} 34 \\ 1 \text { try } \end{gathered}$	$\begin{gathered} \hline 17 \\ 1 \text { try } \end{gathered}$	$\begin{gathered} 148 \\ 2 \text { tries } \end{gathered}$	$\begin{aligned} & 174 \\ & 1 \text { try } \end{aligned}$	$\begin{gathered} 107 \\ 2 \text { tries } \end{gathered}$	$\begin{gathered} 156 \\ 2 \text { tries } \end{gathered}$	$\begin{aligned} & 81 \\ & 1 \text { try } \end{aligned}$	$\begin{gathered} 4 \\ 1 \text { try } \end{gathered}$	$\begin{aligned} & 146 \\ & 1 \text { try } \end{aligned}$
2	\bigcirc	waynedisonitau123	9	601	23 2 tries	$\begin{aligned} & 26 \\ & 1 \text { try } \end{aligned}$	34 2 tries	$\begin{gathered} 32 \\ 1 \text { try } \end{gathered}$	2 tries	$\begin{gathered} 177 \\ 3 \text { tries } \end{gathered}$	$\begin{gathered} 69 \\ 2 \text { tries } \end{gathered}$	$\begin{aligned} & \hline 63 \\ & 1 \text { try } \end{aligned}$	$\begin{gathered} 2 \\ 1 \text { try } \end{gathered}$	$\begin{gathered} 75 \\ 1 \text { try } \end{gathered}$
3	\bigcirc	CRyptoGRapheR	9	786	$\begin{gathered} 15 \\ 1 \text { try } \end{gathered}$	79 2 tries	$\begin{aligned} & 68 \\ & 1 \text { try } \end{aligned}$	$\begin{aligned} & 91 \\ & 1 \text { try } \end{aligned}$	$\begin{aligned} & 171 \\ & 1 \text { try } \end{aligned}$		$\begin{gathered} 146 \\ 2 \text { tries } \end{gathered}$	$\begin{aligned} & 115 \\ & 1 \text { try } \end{aligned}$	$\begin{gathered} 4 \\ 1 \text { try } \end{gathered}$	$\begin{aligned} & \hline 57 \\ & 1 \text { try } \end{aligned}$
4	\bigcirc	kiseki	8	494	$\begin{gathered} 8 \\ 1 \text { try } \end{gathered}$	$\begin{gathered} 27 \\ 1 \text { try } \end{gathered}$	$\begin{aligned} & 38 \\ & 1 \text { try } \end{aligned}$	$\begin{aligned} & 54 \\ & 1 \text { try } \end{aligned}$		4 tries	$\begin{gathered} 146 \\ 2 \text { tries } \end{gathered}$	$\begin{gathered} 75 \\ 1 \text { try } \end{gathered}$	$\begin{gathered} 9 \\ 1 \text { try } \end{gathered}$	97 2 tries
5	\bigcirc	28	8	708	$\begin{gathered} 8 \\ 1 \text { try } \end{gathered}$	79 2 tries	$\begin{aligned} & 40 \\ & 1 \text { try } \end{aligned}$	$\begin{gathered} 136 \\ 2 \text { tries } \end{gathered}$		$\begin{gathered} 174 \\ 2 \text { tries } \end{gathered}$		$\begin{aligned} & 34 \\ & 1 \text { try } \end{aligned}$	$\begin{gathered} 2 \\ 1 \text { try } \end{gathered}$	$\begin{gathered} 155 \\ 2 \text { tries } \end{gathered}$
6	\bigcirc	NoName	8	747	$\begin{gathered} 7 \\ 1 \text { try } \end{gathered}$	72 2 tries	64 2 tries	71 2 tries			$\begin{gathered} 135 \\ 2 \text { tries } \end{gathered}$	$\begin{gathered} 77 \\ 2 \text { tries } \end{gathered}$	$\begin{gathered} 3 \\ 1 \text { try } \end{gathered}$	$\begin{gathered} 178 \\ 3 \text { tries } \end{gathered}$
7	\bigcirc	BAN	8	783	$\begin{gathered} 12 \\ 1 \text { try } \end{gathered}$	61 2 tries	$\begin{aligned} & \hline 56 \\ & 1 \text { try } \end{aligned}$	$\begin{gathered} 87 \\ 3 \text { tries } \end{gathered}$			150 5 tries	$\begin{gathered} 71 \\ 1 \text { try } \end{gathered}$	$\begin{gathered} 4 \\ 1 \text { try } \end{gathered}$	$\begin{gathered} 162 \\ 3 \text { tries } \end{gathered}$
8	\bigcirc	NCTU_a	6	292	$\begin{gathered} 10 \\ 1 \text { try } \end{gathered}$	$\begin{gathered} 18 \\ 1 \text { try } \end{gathered}$	$\begin{aligned} & 96 \\ & 1 \text { try } \end{aligned}$	$\begin{aligned} & 51 \\ & 1 \text { try } \end{aligned}$				$\begin{aligned} & 114 \\ & 1 \text { try } \end{aligned}$	$\begin{gathered} 3 \\ 1 \text { try } \end{gathered}$	1 try
9	\bigcirc	NCTU_Eclipse	6	360	$\begin{gathered} 17 \\ 1 \text { try } \\ \hline \end{gathered}$	41 1 try	$\begin{aligned} & 78 \\ & 1 \text { try } \\ & \hline \end{aligned}$	$\begin{gathered} 138 \\ 2 \text { tries } \end{gathered}$			2 tries	$\begin{gathered} \hline 60 \\ 1 \text { try } \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ 1 \text { try } \end{gathered}$	
10	\bigcirc	UTAhahaha	6	390	$\begin{aligned} & 22 \\ & 1 \text { try } \end{aligned}$	$\begin{aligned} & \hline 64 \\ & 1 \text { try } \end{aligned}$	99 5 tries	$\begin{gathered} 74 \\ 1 \text { try } \end{gathered}$		2 tries		$\begin{aligned} & 41 \\ & 1 \text { try } \end{aligned}$	$\begin{aligned} & \hline 10 \\ & 1 \text { try } \end{aligned}$	1 try
11	\bigcirc	LYB3	6	435	$\begin{aligned} & 21 \\ & 1 \text { try } \end{aligned}$	$\begin{gathered} 133 \\ 2 \text { tries } \end{gathered}$	$\begin{aligned} & 47 \\ & 1 \text { try } \end{aligned}$	$\begin{aligned} & 114 \\ & 1 \text { try } \\ & \hline \end{aligned}$				$\begin{aligned} & 89 \\ & 1 \text { try } \end{aligned}$	$\begin{gathered} 11 \\ 1 \text { try } \\ \hline \end{gathered}$	1 try
12	\bigcirc	NCTU_Capooooooo	6	436	$\begin{gathered} \hline 17 \\ 1 \text { try } \end{gathered}$	$\begin{aligned} & \hline 35 \\ & 1 \text { try } \end{aligned}$	101 4 tries	$\begin{aligned} & \hline 62 \\ & 1 \text { try } \end{aligned}$			1 try	$\begin{gathered} 138 \\ 2 \text { tries } \end{gathered}$	$\begin{gathered} \hline 3 \\ 1 \text { try } \end{gathered}$	3 tries
13	\bigcirc	OwO	6	452	$\begin{aligned} & 21 \\ & 1 \text { try } \end{aligned}$	$\begin{gathered} 119 \\ 2 \text { tries } \end{gathered}$	$\begin{gathered} 89 \\ 2 \text { tries } \end{gathered}$	$\begin{aligned} & 98 \\ & 1 \text { try } \end{aligned}$				$\begin{gathered} 72 \\ 1 \text { try } \end{gathered}$	$\begin{gathered} 13 \\ 1 \text { try } \end{gathered}$	
14	\bigcirc	110NTNU	6	482	$\begin{gathered} 9 \\ 1 \text { try } \end{gathered}$	$\begin{gathered} 81 \\ 2 \text { tries } \end{gathered}$	$\begin{gathered} 113 \\ 3 \text { tries } \end{gathered}$	$\begin{gathered} 87 \\ 1 \text { try } \end{gathered}$				$\begin{aligned} & 130 \\ & 1 \text { try } \end{aligned}$	$\begin{gathered} 2 \\ 1 \text { try } \end{gathered}$	
15	\bigcirc	ABCodeboook	6	520	44 2 tries	$\begin{aligned} & 50 \\ & 1 \text { try } \end{aligned}$	68 2 tries					$\begin{aligned} & 99 \\ & 1 \text { try } \end{aligned}$	$\begin{gathered} 5 \\ 1 \text { try } \end{gathered}$	$\begin{gathered} 174 \\ 3 \text { tries } \end{gathered}$
16	\bigcirc	NCTU_Banana	5	262	$\begin{gathered} 26 \\ 1 \text { try } \\ \hline \end{gathered}$	$\begin{gathered} 68 \\ 1 \text { try } \\ \hline \end{gathered}$	7 tries	$\begin{gathered} 75 \\ 2 \text { tries } \end{gathered}$			3 tries	$\begin{gathered} 50 \\ 2 \text { tries } \end{gathered}$	$\begin{gathered} 3 \\ 1 \text { try } \end{gathered}$	
17	\bigcirc	NCTU_	5	310	$\begin{aligned} & 21 \\ & 1 \text { try } \end{aligned}$	$\begin{gathered} 47 \\ 1 \text { try } \end{gathered}$		$\begin{aligned} & 143 \\ & 1 \text { try } \end{aligned}$				$\begin{aligned} & \hline 95 \\ & 1 \text { try } \end{aligned}$	$\begin{gathered} 4 \\ 1 \text { try } \end{gathered}$	
18	0	EX-panda	5	338	$\begin{gathered} 55 \\ 2 \text { tries } \end{gathered}$	$\begin{gathered} 27 \\ 1 \text { try } \end{gathered}$	5 tries	$\begin{gathered} \hline 95 \\ 1 \text { try } \\ \hline \end{gathered}$				$\begin{aligned} & 137 \\ & 1 \text { try } \\ & \hline \end{aligned}$	$\begin{gathered} 4 \\ 1 \text { try } \end{gathered}$	
19	0	NCU	5	372	$\begin{gathered} \hline 17 \\ 1 \text { try } \end{gathered}$	55 2 tries		$\begin{aligned} & 152 \\ & 1 \text { try } \end{aligned}$				$\begin{aligned} & 123 \\ & 1 \text { try } \end{aligned}$	$\begin{gathered} 5 \\ 1 \text { try } \end{gathered}$	
20	0	HongLongLongLong	5	387	$\begin{aligned} & 25 \\ & 1 \text { try } \end{aligned}$	$\begin{gathered} 49 \\ 2 \text { tries } \end{gathered}$	1 try	$\begin{gathered} 136 \\ 2 \text { tries } \end{gathered}$				$\begin{aligned} & 133 \\ & 1 \text { try } \end{aligned}$	$\begin{gathered} 4 \\ 1 \text { try } \end{gathered}$	
21	0	zappers	5	401	$\begin{aligned} & \hline 35 \\ & 1 \text { try } \end{aligned}$	$\begin{aligned} & 81 \\ & 1 \text { try } \end{aligned}$	$\begin{aligned} & 122 \\ & 1 \text { try } \end{aligned}$	1 try	1 try		1 try	$\begin{aligned} & 157 \\ & 1 \text { try } \end{aligned}$	$\begin{gathered} \hline 6 \\ 1 \text { try } \end{gathered}$	
22	\bigcirc	NTNU_ch1W4w4	5	429	$\begin{gathered} 33 \\ 2 \text { tries } \end{gathered}$	64 2 tries	3 tries	$\begin{gathered} 159 \\ 2 \text { tries } \end{gathered}$				$\begin{aligned} & 106 \\ & 1 \text { try } \end{aligned}$	$\begin{gathered} 7 \\ 1 \text { try } \end{gathered}$	
23	0	C++S	5	440	$\begin{gathered} 39 \\ 1 \text { try } \end{gathered}$	74 $1 \text { try }$	$\begin{gathered} 134 \\ 3 \text { tries } \end{gathered}$					$\begin{gathered} 114 \\ 2 \text { tries } \end{gathered}$	$\begin{gathered} 19 \\ 1 \text { try } \end{gathered}$	4 tries
24	0	BITreap	5	533	$\begin{gathered} 16 \\ 1 \text { try } \end{gathered}$	$\begin{gathered} 163 \\ 3 \text { tries } \end{gathered}$	$\begin{aligned} & 140 \\ & 1 \text { try } \end{aligned}$	$\begin{gathered} 149 \\ 2 \text { tries } \end{gathered}$					$\begin{gathered} 5 \\ 1 \text { try } \end{gathered}$	
25	0	NCTU_HongLongLong	5	555	$\begin{aligned} & \hline 87 \\ & 1 \text { try } \end{aligned}$	$\begin{gathered} 126 \\ 3 \text { tries } \end{gathered}$	3 tries	$\begin{gathered} 59 \\ 3 \text { tries } \end{gathered}$				$\begin{gathered} 179 \\ 2 \text { tries } \end{gathered}$	$\begin{gathered} 4 \\ 1 \text { try } \end{gathered}$	
26	0	ToBeContinued	4	146	$\begin{gathered} 9 \\ 1 \text { try } \end{gathered}$	36 2 tries	1 try	$\begin{aligned} & \hline 67 \\ & 1 \text { try } \end{aligned}$					$\begin{gathered} 14 \\ 1 \text { try } \end{gathered}$	1 try
27	0	bz\pileafd	4	197	$\begin{gathered} 29 \\ 2 \text { tries } \end{gathered}$	$\begin{gathered} 51 \\ 1 \text { try } \\ \hline \end{gathered}$	3 tries	$\begin{gathered} \hline 91 \\ 1 \text { try } \\ \hline \end{gathered}$				4 tries	$\begin{gathered} 6 \\ 1 \text { try } \end{gathered}$	3 tries

RANK		TEAM		ORE	A	B	C	D	E	F	G	H	I	J
28	0	NCTU_3.12B	4	215	$\begin{gathered} 21 \\ 1 \text { try } \end{gathered}$	$\begin{gathered} 61 \\ 2 \text { tries } \end{gathered}$	2 tries	$\begin{gathered} 86 \\ 2 \text { tries } \end{gathered}$				3 tries	$\begin{gathered} 7 \\ 1 \text { try } \end{gathered}$	
29	0	NCTU_White	4	252	$\begin{gathered} 29 \\ 1 \text { try } \end{gathered}$	$\begin{aligned} & 120 \\ & 1 \text { try } \end{aligned}$	1 try				1 try	$\begin{aligned} & 97 \\ & 1 \text { try } \end{aligned}$	$\begin{gathered} 6 \\ 1 \text { try } \end{gathered}$	
30	0	NTUT_Kn1ghts	4	262	$\begin{gathered} 56 \\ 1 \text { try } \end{gathered}$	$\begin{aligned} & 135 \\ & 1 \text { try } \end{aligned}$			$\begin{aligned} & 66 \\ & 1 \text { try } \end{aligned}$		2 tries		$\begin{gathered} 5 \\ 1 \text { try } \end{gathered}$	
31	0	NCTU_LoTaTea	4	274	50 3 tries	$\begin{aligned} & \hline 62 \\ & 1 \text { try } \end{aligned}$				2 tries		$\begin{aligned} & 116 \\ & 1 \text { try } \end{aligned}$	$\begin{gathered} 6 \\ 1 \text { try } \end{gathered}$	
32	0	Rabbit Foot	4	275	$\begin{aligned} & 20 \\ & 1 \text { try } \end{aligned}$	$\begin{aligned} & \hline 63 \\ & 1 \text { try } \end{aligned}$		$\begin{gathered} 161 \\ 2 \text { tries } \end{gathered}$			2 tries	4 tries	$\begin{gathered} 11 \\ 1 \text { try } \end{gathered}$	
33	0	CCU_hahahaha	4	296	$\begin{gathered} 23 \\ 1 \text { try } \end{gathered}$	$\begin{aligned} & \hline 65 \\ & 1 \text { try } \end{aligned}$	2 tries	119 $5 \text { tries }$				4 tries	$\begin{gathered} 9 \\ 1 \text { try } \end{gathered}$	
34	0	RedThunder	4	308	$\begin{gathered} 37 \\ 2 \text { tries } \end{gathered}$	$\begin{gathered} 132 \\ 3 \text { tries } \end{gathered}$		$\begin{aligned} & 75 \\ & 1 \text { try } \end{aligned}$				2 tries	$\begin{gathered} 4 \\ 1 \text { try } \end{gathered}$	1 try
35	0	NTPU_kite	4	310	$\begin{gathered} 34 \\ 1 \text { try } \end{gathered}$	$\begin{aligned} & 55 \\ & 1 \text { try } \end{aligned}$		115 6 tries			1 try		$\begin{gathered} 6 \\ 1 \text { try } \end{gathered}$	
36	0	NCTU_Daisangen	4	313	$\begin{gathered} 38 \\ 2 \text { tries } \end{gathered}$	$\begin{gathered} 142 \\ 4 \text { tries } \end{gathered}$		$\begin{gathered} 44 \\ 1 \text { try } \end{gathered}$					$\begin{gathered} 9 \\ 1 \text { try } \end{gathered}$	
37	0	NCTU_KokushiMusou	4	315	$\begin{gathered} 33 \\ 2 \text { tries } \end{gathered}$	$\begin{gathered} 120 \\ 4 \text { tries } \end{gathered}$		57 2 tries				1 try	$\begin{gathered} 5 \\ 1 \text { try } \end{gathered}$	
38	\bigcirc	NCU_309	4	331	$\begin{aligned} & 46 \\ & 1 \text { try } \end{aligned}$	$\begin{gathered} 135 \\ 3 \text { tries } \end{gathered}$		$\begin{aligned} & 103 \\ & 1 \text { try } \end{aligned}$					$\begin{gathered} 7 \\ 1 \text { try } \end{gathered}$	
39	0	Really Simply Accepted	4	531	$\begin{aligned} & \hline 25 \\ & 1 \text { try } \end{aligned}$	$\begin{gathered} 178 \\ 3 \text { tries } \end{gathered}$		3 tries			1 try	$\begin{gathered} 162 \\ 7 \text { tries } \end{gathered}$	$\begin{gathered} 6 \\ 1 \text { try } \end{gathered}$	
40	0	NCTU_Pusheen	3	100	$\begin{aligned} & \hline 38 \\ & 1 \text { try } \end{aligned}$	$\begin{gathered} 37 \\ 2 \text { tries } \end{gathered}$	3 tries	2 tries				6 tries	$\begin{gathered} 5 \\ 1 \text { try } \end{gathered}$	
41	0	the gourmet of the desert	3	112	$\begin{gathered} 17 \\ 1 \text { try } \end{gathered}$	$\begin{aligned} & \hline 89 \\ & 1 \text { try } \end{aligned}$		10 tries					$\begin{gathered} 6 \\ 1 \text { try } \end{gathered}$	
42	0	SAI_sixtieth	3	127	$\begin{gathered} 18 \\ 1 \text { try } \end{gathered}$	4 tries	4 tries	$\begin{gathered} 64 \\ 2 \text { tries } \end{gathered}$					$\begin{gathered} 5 \\ 2 \text { tries } \end{gathered}$	
43	0	MCU_Shark	3	142	$\begin{gathered} 18 \\ 1 \text { try } \end{gathered}$	$\begin{gathered} 97 \\ 2 \text { tries } \end{gathered}$	1 try					3 tries	$\begin{gathered} \hline 7 \\ 1 \text { try } \end{gathered}$	
44	0	GWAWA	3	145	$\begin{gathered} 38 \\ 1 \text { try } \end{gathered}$	$\begin{gathered} 82 \\ 2 \text { tries } \end{gathered}$							$\begin{gathered} \hline 5 \\ 1 \text { try } \end{gathered}$	
45	0	Anti-Accept	3	148	$\begin{gathered} 33 \\ 1 \text { try } \end{gathered}$	$\begin{gathered} 86 \\ 2 \text { tries } \end{gathered}$		2 tries	1 try			2 tries	$\begin{gathered} 9 \\ 1 \text { try } \end{gathered}$	
46	0	NTNU_WWW	3	181	$\begin{aligned} & 62 \\ & 1 \text { try } \end{aligned}$	$\begin{aligned} & 105 \\ & 1 \text { try } \end{aligned}$						2 tries	$\begin{gathered} 14 \\ 1 \text { try } \end{gathered}$	
47	0	CDJ	3	184	$\begin{aligned} & 54 \\ & 1 \text { try } \end{aligned}$	$\begin{gathered} 96 \\ 2 \text { tries } \end{gathered}$							$\begin{gathered} 14 \\ 1 \text { try } \\ \hline \end{gathered}$	
48	0	SHAAAAARK	3	206	$\begin{gathered} 111 \\ 2 \text { tries } \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ 2 \text { tries } \end{gathered}$		2 tries					$\begin{gathered} 7 \\ 1 \text { try } \\ \hline \end{gathered}$	
49	0	FJCU_Return0	3	210	$\begin{gathered} 66 \\ 1 \text { try } \end{gathered}$	1 try		$\begin{aligned} & 139 \\ & 1 \text { try } \end{aligned}$				1 try	$\begin{gathered} 5 \\ 1 \text { try } \end{gathered}$	
50	0	CSDD	3	215	$\begin{gathered} 19 \\ 1 \text { try } \end{gathered}$	$\begin{gathered} 148 \\ 3 \text { tries } \end{gathered}$	1 try						$\begin{gathered} 8 \\ 1 \text { try } \end{gathered}$	
51	0	NSYSU_Ant	3	219	$\begin{aligned} & 103 \\ & 1 \text { try } \end{aligned}$			$\begin{aligned} & 45 \\ & 1 \text { try } \end{aligned}$	1 try			1 try	$\begin{gathered} 71 \\ 1 \text { try } \end{gathered}$	
52	0	NTNU_import_magic	3	222	$\begin{gathered} 31 \\ 1 \text { try } \\ \hline \end{gathered}$	$\begin{gathered} 145 \\ 3 \text { tries } \end{gathered}$						2 tries	$\begin{gathered} 6 \\ 1 \text { try } \\ \hline \end{gathered}$	
53	0	WeWantWin	3	260	$\begin{gathered} 117 \\ 2 \text { tries } \end{gathered}$	2 tries	1 try	1 try				$\begin{aligned} & 108 \\ & 1 \text { try } \end{aligned}$	$\begin{gathered} 15 \\ 1 \text { try } \end{gathered}$	
54	0	HmmmHuhh	3	263	$\begin{gathered} 42 \\ 3 \text { tries } \end{gathered}$	$\begin{gathered} 131 \\ 3 \text { tries } \end{gathered}$		1 try					$\begin{gathered} \hline 10 \\ 1 \text { try } \\ \hline \end{gathered}$	
55	0	CCU_TOOL_MAN	3	279	89 2 tries	$\begin{aligned} & 159 \\ & 1 \text { try } \end{aligned}$		2 tries					$\begin{gathered} 11 \\ 1 \text { try } \end{gathered}$	
56	0	TTU02	3	387	$\begin{gathered} 125 \\ 4 \text { tries } \end{gathered}$	$\begin{gathered} 149 \\ 3 \text { tries } \end{gathered}$							$\begin{gathered} 13 \\ 1 \text { try } \end{gathered}$	
57	0	NUK_4+1BadBad	2	23	$\begin{gathered} \hline 17 \\ 1 \text { try } \end{gathered}$			1 try					$\begin{gathered} 6 \\ 1 \text { try } \end{gathered}$	
58	0	BearHaoEn	2	24	$\begin{gathered} 19 \\ 1 \text { try } \end{gathered}$			2 tries					$\begin{gathered} \hline 5 \\ 1 \text { try } \end{gathered}$	

RANK		TEAM		RE	A	B	C	D	E	F	G	H	J
90	0	TeamACE	2	170	$\begin{gathered} 116 \\ 3 \text { tries } \end{gathered}$		2 tries					$\begin{gathered} 14 \\ 1 \text { try } \end{gathered}$	
91	0	NSYSU_Bat	2	186	$\begin{aligned} & 162 \\ & 1 \text { try } \end{aligned}$							$\begin{aligned} & 24 \\ & 1 \text { try } \end{aligned}$	
92	0	YesOrNo	2	206	$\begin{gathered} 151 \\ 2 \text { tries } \end{gathered}$	3 tries			1 try			15 2 tries	2 tries
93	0	AKBandai	2	215	$\begin{gathered} 172 \\ 3 \text { tries } \end{gathered}$	3 tries		1 try				$\begin{gathered} \hline 3 \\ 1 \text { try } \end{gathered}$	
94	0	MCU_Alpin	2	239	130 6 tries							$\begin{gathered} 9 \\ 1 \text { try } \end{gathered}$	
95	0	AmongUs	2	248	$\begin{gathered} 177 \\ 3 \text { tries } \end{gathered}$							$\begin{gathered} 31 \\ 1 \text { try } \end{gathered}$	
96	0	Linzoma	2	258	$\begin{gathered} 179 \\ 4 \text { tries } \end{gathered}$	4 tries					1 try	$\begin{gathered} 19 \\ 1 \text { try } \end{gathered}$	
97	0	IndexO	2	285	179 6 tries	4 tries						$\begin{gathered} 6 \\ 1 \text { try } \end{gathered}$	
98	0	GAMANNEI	1	4	3 tries							$\begin{gathered} 4 \\ 1 \text { try } \end{gathered}$	
99	0	WA_only	1	5	6 tries							$\begin{gathered} 5 \\ 1 \text { try } \end{gathered}$	
100	0	CCU_OreO	1	6	4 tries	1 try						$\begin{gathered} 6 \\ 1 \text { try } \end{gathered}$	
101	0	345	1	7		5 tries					1 try	$\begin{gathered} \hline 7 \\ 1 \text { try } \end{gathered}$	
	0	BRM	1	7	2 tries							$\begin{gathered} 7 \\ 1 \text { try } \end{gathered}$	1 try
	0	CCU_Paofu	1	7	4 tries		2 tries		2 tries			$\begin{gathered} \hline 7 \\ 1 \text { try } \end{gathered}$	
104	0	MCU_Delta	1	8				3 tries				$\begin{gathered} 8 \\ 1 \text { try } \end{gathered}$	
	0	MCU_Hydra	1	8	1 try				1 try			$\begin{gathered} \hline 8 \\ 1 \text { try } \end{gathered}$	
106	0	CJCU_AIRC	1	9								$\begin{gathered} \hline 9 \\ 1 \text { try } \end{gathered}$	
	0	memetour	1	9	5 tries	1 try						$\begin{gathered} 9 \\ 1 \text { try } \end{gathered}$	
108	0	Hello world	1	10		2 tries			1 try		2 tries	$\begin{gathered} 10 \\ 1 \text { try } \end{gathered}$	
109	0	floccinaucinihilipilifiCATion	1	11	1 try							$\begin{gathered} 11 \\ 1 \text { try } \end{gathered}$	
	0	JZHW	1	11				1 try			1 try	$\begin{gathered} 11 \\ 1 \text { try } \end{gathered}$	
	0	Moomin	1	11	3 tries							$\begin{gathered} 11 \\ 1 \text { try } \\ \hline \end{gathered}$	
	0	NUK_JellyLegion	1	11		1 try	1 try					$\begin{gathered} 11 \\ 1 \text { try } \\ \hline \end{gathered}$	
	0	Salt fish	1	11	7 tries							$\begin{gathered} \hline 11 \\ 1 \text { try } \\ \hline \end{gathered}$	
114	0	CCU Nocturnal penile tumescencea	1	12			1 try	3 tries			1 try	$\begin{gathered} 12 \\ 1 \text { try } \\ \hline \end{gathered}$	
	0	MCU_AC	1	12	2 tries							$\begin{gathered} 12 \\ 1 \text { try } \\ \hline \end{gathered}$	
	0	MCU_Aqua	1	12	2 tries		1 try					$\begin{gathered} 12 \\ 1 \text { try } \end{gathered}$	
	0	NUK_10755	1	12	2 tries				3 tries			$\begin{gathered} 12 \\ 1 \text { try } \end{gathered}$	
118	0	612-1	1	13	2 tries	3 tries						$\begin{gathered} 13 \\ 1 \text { try } \\ \hline \end{gathered}$	
	0	FJCU_C	1	13							3 tries	$\begin{gathered} 13 \\ 1 \text { try } \\ \hline \end{gathered}$	
	0	FJU GGWP/FF		13								13 1 try	

Categories	Cell colours
Observers	Solved first
	Solved
	Tried, incorrect

RANK	team	SCORE	PA	PB	PC	PD	PE	PF	PG	PH	PI	PJ	PK	PL	PM
1	waynedisonitau123 National Taiwan University	101214	2	14	221		179	126	189	34	24		200		5
			1 try	1 try	1 try	6 tries	3 tries	1 try	4 tries	1 try	1 try		7 tries		1 try
2	CRyptoGRapheR National Taiwan University	101309	4	17	239		222	129	275	57	36		192		38
			1 try	4 tries	1 try	1 try		2 tries		2 tries					
3	kiseki	101519	4	82	102		161	94	266	49	257		284		20
	National Taiwan University		1 try	2 tries	1 try		1 try	1 try	4 tries	1 try	4 tries		4 tries		1 try
4	UTAhahaha National Taiwan University	91017	3	12			134	132	264	30	106		180		16
			1 try	1 try		3 tries	1 try	4 tries	1 try	1 try	2 tries		4 tries		1 try
5	BBQube	91033	6	31			86	117	237	55	77		272		12
	National Taiwan University		1 try	1 try			2 tries	1 try	4 tries	1 try	1 try		4 tries		1 try
6	ABCodeboook National Taiwan University	8727	5	60	190		126	150		44	97				15
			1 try	1 try	1 try		2 tries	1 try	5 tries	1 try	2 tries				1 try
7	NCTU_a	7539	4	12			145	121		91	71				15
	National Chiao Tung University		1 try	1 try			3 tries	1 try	3 tries	1 try	3 tries				1 try
8	NCTU_Capooooooo National Chiao Tung University	7671	3	28	185			211		56	84				24
			1 try	1 try	2 tries		6 tries	3 tries		1 try	2 tries				1 try
9	LYB3	7683	7	33			264	136		60	107				16
	National Taiwan University		1 try	1 try		9 tries	3 tries	1 try		2 tries	1 try				1 try
10	EX-panda	7734	4	59	168		145	196		140					22
	National Tsing Hua University		1 try	1 try	1 try		1 try	1 try		1 try					1 try
11	BAN	6396	2	88			65	131		95					15
	National Taiwan University		1 try	1 try	1 try		1 try	1 try	2 tries	1 try	9 tries		1 try		1 try
12	NoName	6532	3	45					191	50	124				19
	National Taiwan University		1 try	3 tries			2 tries	5 tries	2 tries	1 try	3 tries				1 try
13	HongLongLongLong National Taiwan Ocean University	6615	8	43	257			134		81					52
			1 try	2 tries	1 try	3 tries	3 tries	2 tries		1 try					1 try
14	NCTU_HongLongLong National Chiao Tung University	6721	37	33			277	71		152					51
			1 try	2 tries			4 tries	2 tries		1 try	1 try				1 try
15	OwO	6723	10	120	259					90	228				16
	National Taiwan University		1 try	1 try	1 try		1 try	6 tries		1 try	1 try				1 try
16	bzpileafd	6762	13	53			217	276		95					8
	National Tsing Hua University		1 try	1 try	1 try		3 tries	4 tries		1 try					1 try
17	ToBeContinued National Taiwan University	6801	6	99	207			279		140					10
			1 try	3 tries	1 try	3 tries	2 tries	2 tries		1 try					1 try
18	28	6839	3	146			186			199	141				24
	National Tsing Hua University		1 try	4 tries			1 try	4 tries		4 tries	2 tries		3 tries		1 try
19	Watame did nothing wrong National Tsing Hua University	6966	6	21				285		89	231				54
			1 try	2 tries		2 tries		10 tries		1 try	5 tries				1 try
20	110NTNU	5413	4	30				204		100					15
	National Taiwan Normal University		1 try	1 try			1 try	4 tries		1 try					1 try
21	NCTU_LoTaTea National Chiao Tung University	5448	6	112				163		94					33
			1 try	1 try			5 tries	2 tries		2 tries					1 try
22	NCTU_Eclipse National Chiao Tung University	5528	5	81						107	234				21
			1 try	1 try			1 try	3 tries		3 tries	3 tries				1 try
23	CCU_Senpai Sayounara National Chung Cheng University	5605	18	49	289					164					25
			1 try	1 try	3 tries			2 tries		2 tries					1 try
24	NCTU_	5694	12	35				191		291					25
	National Chiao Tung University		1 try	1 try			3 tries	2 tries		7 tries					1 try
25	NCTU_White National Chiao Tung University	4131	7	35						59					10
			1 try	2 tries						1 try	4 tries		1 try		1 try
26	NTNU_ch1W4w4 National Taiwan Normal University	4180	6	19						122					13
			1 try	1 try	1 try			4 tries		2 tries					1 try
27	MCU_Shark Ming Chuan University	4224	7	46						113					58
			1 try	1 try			4 tries			1 try					1 try
28	RedThunder National Taiwan Normal University	4255	14	65						117					39
			2 tries	1 try				6 tries		1 try	3 tries				1 try
29	NCTU_Pusheen National Chiao Tung University	4271	8	48						161					34
			1 try	2 tries				3 tries		1 try					1 try
30	Rabbit Foot	4332	8	50	246										28
30	National Taiwan Normal University	4332	1 try	1 try	1 try					8 tries					1 try
31	BITreap	4335	6	42						171					96
31	National Tsing Hua University	4335	1 try	1 try	1 try			3 tries		2 tries	2 tries				1 try
32	NCU_309	4338	35	101	117										45
32	National Central University	4338	1 try	3 tries	1 try					11 tries					1 try
33	zappers	4347	19	116						161					31
33	Fu Jen Catholic University		1 try	2 tries				3 tries		1 try					1 try
34	HmmmHuhh	4358	18	122		165									33
	National Taiwan Ocean University		2 tries	1 try		1 try	2 tries								1 try
35	kws	4367	6	55						210					16
	National Tsing Hua University		1 try	3 tries	1 try					3 tries					1 try

RANK	TEAM	SCORE	PA	PB	PC	PD	PE	PF	PG	PH	PI	PJ	PK	PL	PM
75	IndexO Yuan Ze University	3389	$\begin{gathered} 14 \\ 1 \text { try } \end{gathered}$	241 2 tries											74 3 tries
76	Linzoma National Tsing Hua University	3405	$\begin{gathered} 40 \\ 2 \text { tries } \end{gathered}$	$\begin{gathered} 232 \\ 3 \text { tries } \end{gathered}$											$\begin{aligned} & 73 \\ & 1 \text { try } \end{aligned}$
77	CSDD Yuan Ze University	3419	$\begin{gathered} 10 \\ 1 \text { try } \end{gathered}$	$\begin{gathered} 224 \\ 4 \text { tries } \end{gathered}$		1 try		1 try		1 try					$\begin{gathered} 65 \\ 4 \text { tries } \end{gathered}$
78	NUK_EhGanPangolin National University of Kaohsiung	3424	91 6 tries	$\begin{aligned} & 157 \\ & 1 \text { try } \end{aligned}$											$\begin{gathered} 76 \\ 1 \text { try } \\ \hline \end{gathered}$
79	NTCU_NONAMETEAM National Taichung University of Education	3430	$\begin{gathered} 11 \\ 1 \text { try } \end{gathered}$	284 4 tries											$\begin{aligned} & 75 \\ & 1 \text { try } \end{aligned}$
80	XDDD National Formosa University	3439	31 3 tries	163 $4 \text { tries }$	4 tries										$\begin{aligned} & 145 \\ & 1 \text { try } \end{aligned}$
81	NTNU_import_magic National Taiwan Normal University	236	$\begin{gathered} 11 \\ 1 \text { try } \end{gathered}$	4 tries			1 try	3 tries							$\begin{aligned} & 25 \\ & 1 \text { try } \end{aligned}$
82	WeWantWin National Taiwan Ocean University	236	$\begin{gathered} 8 \\ 1 \text { try } \end{gathered}$	3 tries				5 tries							$\begin{gathered} 28 \\ 1 \text { try } \end{gathered}$
83	bubble-milk-tea National Kaohsiung University of Science and Technology	257	$\begin{gathered} 13 \\ 2 \text { tries } \end{gathered}$	8 tries											$\begin{aligned} & 24 \\ & 1 \text { try } \end{aligned}$
84	floccinaucinihilipilifiCATion National Taiwan Ocean University	262	$\begin{gathered} \hline 8 \\ 1 \text { try } \end{gathered}$	10 tries											$\begin{gathered} \hline 54 \\ 1 \text { try } \\ \hline \end{gathered}$
85	MCU_Alpin Ming Chuan University	265	$\begin{gathered} 8 \\ 1 \text { try } \end{gathered}$	4 tries											$\begin{gathered} \hline 57 \\ 1 \text { try } \\ \hline \end{gathered}$
86	BMI48 Tatung University	286	$\begin{gathered} 7 \\ 1 \text { try } \end{gathered}$		2 tries			6 tries							$\begin{gathered} 79 \\ 1 \text { try } \\ \hline \end{gathered}$
87	CHU_MapoTofu Chung Hua University	299	$\begin{gathered} 30 \\ 2 \text { tries } \end{gathered}$	7 tries	1 try										$\begin{aligned} & 49 \\ & 1 \text { try } \end{aligned}$
88	NTNU_WWW National Taiwan Normal University	2106	$\begin{gathered} 22 \\ 3 \text { tries } \end{gathered}$	4 tries				8 tries							$\begin{aligned} & 44 \\ & 1 \text { try } \end{aligned}$
89	Crane Game University Feng Chia University	2122	$\begin{gathered} 18 \\ 3 \text { tries } \end{gathered}$		3 tries		4 tries								$\begin{aligned} & \hline 64 \\ & 1 \text { try } \end{aligned}$
90	king of coding National Formosa University	2135	$\begin{gathered} 36 \\ 2 \text { tries } \end{gathered}$	5 tries			3 tries								$\begin{aligned} & 79 \\ & 1 \text { try } \end{aligned}$
91	no idea National Chi Nan University	2141	$\begin{gathered} 20 \\ 2 \text { tries } \end{gathered}$	4 tries											$\begin{aligned} & 101 \\ & 1 \text { try } \end{aligned}$
92	123 Yuan Ze University	2157	$\begin{gathered} 25 \\ 2 \text { tries } \end{gathered}$				6 tries								$\begin{aligned} & 112 \\ & 1 \text { try } \end{aligned}$
93	IROT National Kaohsiung University of Science and Technology	2167	$\begin{gathered} 29 \\ 3 \text { tries } \end{gathered}$				4 tries								$\begin{gathered} 78 \\ 2 \text { tries } \end{gathered}$
94	CJCU_AIRC Chang Jung Christian University	2173	$\begin{gathered} 37 \\ 4 \text { tries } \end{gathered}$												$\begin{gathered} 76 \\ 1 \text { try } \\ \hline \end{gathered}$
95	Soy Milk National Formosa University	2206	34 3 tries				1 try								$\begin{aligned} & 132 \\ & 1 \text { try } \end{aligned}$
96	NEDuck National Taipei University of Business	2210	$\begin{gathered} 102 \\ 4 \text { tries } \end{gathered}$	6 tries			7 tries						3 tries		$\begin{aligned} & 48 \\ & 1 \text { try } \end{aligned}$
97	Three_dogs Providence University	2212	52 5 tries					1 try							$\begin{gathered} 80 \\ 1 \text { try } \end{gathered}$
98	TTU02 Tatung University	2303	46 8 tries							1 try					$\begin{gathered} 97 \\ 2 \text { tries } \end{gathered}$
99	TKUECE Tamkang University	2306	$\begin{aligned} & \hline 45 \\ & 1 \text { try } \end{aligned}$	2 tries			3 tries			3 tries					221 3 tries
100	For The Point Fu Jen Catholic University	2328	$\begin{gathered} 39 \\ 1 \text { try } \\ \hline \end{gathered}$												$\begin{aligned} & 289 \\ & 1 \text { try } \\ & \hline \end{aligned}$
101	Team Wild Card National Taipei University of Education	2397	$\begin{gathered} 98 \\ 5 \text { tries } \end{gathered}$												$\begin{aligned} & 219 \\ & 1 \text { try } \\ & \hline \end{aligned}$
	Summary	396	6 101 - 63 (3) 0 (1) 2 min	(4) 78 - 135 (2) 0 (C) 12 min	$\begin{array}{ll} \hline \text { 1) } & 19 \\ \text { 日f } & 32 \\ \text { (3) } & 0 \\ \text { (c) } & 102 \mathrm{~min} \end{array}$	14 - 42 (3) 0 (1) 165 min	13 - 145 (2) 0 (1) 65 min	19 127 (3) 0 (C) 71 min	6 - 24 (2) 0 (C) 189 min	148 - 108 (2) 0 (1) 30 min	14 - 37 (3) 0 (b) 24 min	14 - 5 (2) 0 (1) n/a	4 5 - 26 (2) 0 (C) 180 min	16 - 1 (3) 0 (1) n/a	101 - 11 (2) 0 (c) 5 min

Cell colours
Solved first
Solved
Tried, incorrect
Tried, pending
Untried

International Collegiate
Programming Contest

Problem A
 Right-Coupled Numbers

Time limit: 1 second
Memory limit: 1024 megabytes

Problem Description

An integer x is said to be a right-coupled number, if you can find two integers, say $0<a \leq b \leq x$ such that $a \times b=x$ and $a / b \geq 0.5$. In this problem, your task is to determine whether a given integer is a right-coupled number or not.

Input Format

The first line of the input is an integer N denoting the number of test cases. Each test case is in one line, which contains a single integer $0<x<2^{15}$.

Output Format

If the given integer x is a right-coupled number, output 1 ; otherwise, output 0 . Each is in a single line.

Technical Specification

- $1 \leq N \leq 1000$
- $0<x<2^{15}$

Sample Input 1

```
4
6 6
55
105
150
```


Sample Output 1

```
1
0
0
1
```

Almost blank page

Problem B
 Make Numbers

Time limit: 1 second
Memory limit: 1024 megabytes

Problem Description

Peter is a math teacher at an elementary school. To familiarize students with three basic arithmetic operations plus $(+)$, minus $(-)$ and times (\times), he gives a simple arithmetic puzzle as homework. The puzzle is that you are given 4 digits, and you are told to build as many non-negative integers as possible using just those 4 digits and at least one of the three basic arithmetic operations. For example, you are given $1,1,2,1$ as the digits, and then you can build 32 non-negative integers as Table 1.

Table 1: Numbers made by $1,1,2,1$.

$0=2-1-1 \times 1$	$22=21+1 \times 1$
$1=2+1-1-1$	$23=21+1+1$
$2=2+1-1 \times 1$	$32=21+11$
$3=2+1+1-1$	$109=111-2$
$4=2+1+1 \times 1$	$111=112-1$
$5=2+1+1+1$	$112=112 \times 1$
$8=11-2-1$	$113=112+1$
$9=11-2 \times 1$	$120=121-1$
$10=12-1-1$	$121=121 \times 1$
$11=12-1 \times 1$	$122=121+1$
$12=12+1-1$	$132=12 \times 11$
$13=12+1 \times 1$	$210=211-1$
$14=12+1+1$	$211=211 \times 1$
$19=21-1-1$	$212=211+1$
$20=21-1 \times 1$	$222=111 \times 2$
$21=21+1-1$	$231=21 \times 11$

To check whether the student's answer includes all possible integers, Peter needs to know the total number of non-negative integers that can be built for the puzzle. Please write a program to help Peter compute the total number.

Input Format

The input file contains 4 integers separated by a space in a line, which indicates the given digits.

Output Format

Output the total number of non-negative integers that can be built.

Technical Specification

- The expressions are composed by concatenating the 4 given digits and at least one operation in $\{+,-, \times\}$. The given digits are the elements in $\{1,2,3, \ldots 9\}$.
- The given digits are partitioned into several groups and the digits in each group are concatenated as a number in arbitrarily permutation order.
- The symbol - can only be treated as a minus operator.
- The operations + and - have equal precedence.
- The operation \times has higher precedence than + and - .
- Operations with the highest precedence are evaluated first, and operations with equal precedence are evaluated from left to right.

Sample Input 1

```
1 1 1 1
```


Sample Output 1

```
15
```


Sample Input 2

$\begin{array}{llll}1 & 1 & 2\end{array}$

Sample Output 2

Problem C
 Pyramid

Time limit: 3 seconds
Memory limit: 1024 megabytes

Problem Description

Consider an $n \times n$ grid where nodes are labelled as (i, j) for $0 \leq i, j<n$. We rotate it 45 degree in clockwise direction and keep only its top half part. Then you get a pyramid, as shown in Figure 1. All of the nodes laid on the anti-diagonal of the grid have labels $(n-1-j, j)$ for $0 \leq j<n$. They are located at the bottom line of the pyramid. For simplicity and clarity, we name node $(n-1-j, j)$ as exit j. Node $(0,0)$ is called the starting point (labelled as P in Figure (1). When you insert a ball from the starting point, this ball will roll down to some of the exits. A ball located at node (i, j) can only roll down to either node $(i+1, j)$ or node $(i, j+1)$, and the ball shall never be broken or split. There is a tiny switch equipped on every node other than the exits that controls the move direction of the ball, and this switch always works well. The switch has exactly two states: either L or R, indicates that the ball can move to node $(i+1, j)$ or $(i, j+1)$, respectively. After the ball leaves this node, the switch changes immediately to the other state. The default setting for a switch is at L.

Figure 1: An example for $n=5$.

When you insert the first ball into P, this ball will reach exit 0 , and the states of nodes ($i, 0$) for $0 \leq i<n-1$ are now all R 's. Then you insert the second, third, and so on so forth, one by one, until the $k^{t h}$ ball finishes. The status of every switch accumulates with these balls. Please write a program to determine the number of the exit point for the $k^{\text {th }}$ ball.

Input Format

The first line of the input is a number that specifies the number of test cases. Each test case has only one line that gives you two space-delimited numbers n and k.

Output Format

Please output the exit number of the $k^{t h}$ ball in one line.

Technical Specification

- There are at most 20 test cases.
- $1 \leq n \leq 10^{4}$.
- $1 \leq k \leq 10^{8}$.

Sample Input 1

2
51
52

Sample Output 1
0
1
Sample Input 2

3
53
54
55

Sample Output 2

```
2
3
2
```

icpc.foundation
International Collegiate
Programming Contest

Problem D
 Quality Monitoring

Time limit: 1 second
Memory limit: 1024 megabytes

Problem Description

To provide a better drinking quality, the government is going to deploy some "smart devices" into the water supplying system so that the quality of the water can be monitored. The water supplying system consists of many pipes, and two pipes are connected by a joint. You may assume that the system forms a connected simple graph, with pipes being the edges and joints being the vertices. An example is given in the following figure.

The smart devices are designed to be deployed at the joints. However, two adjacent devices may interfere with each other, so it is required that no two devices are adjacent. There have to be enough number of devices deployed so that the system can be fully monitored. Formally, the system is fully monitored if

- there are at least $n-28$ devices deployed, and
- no two devices are adjacent.

Please determine whether the system can be fully monitored. If the answer is no, output -1 ; otherwise, output the maximum number of devices that can be deployed.

Input Format

The first line of the input file contains two positive integers n and m, where n is the number of joints, numbered from 0 to $n-1$, and m is the number of pipes. Each of the following m lines contains two nonnegative integers, indicating the joints at two ends of a pipe.

Output Format

Output an integer: " 1 " if the system cannot be fully monitored; otherwise, the maximum number of devices that can be deployed.

Technical Specification

- $2 \leq n \leq 3 \times 10^{4}, 1 \leq m \leq 5 \times 10^{5}$

Sample Input 1

```
5
1 0
2 3
14
1 2
3 1
34
04
```


Sample Output 1

2
icpc.foundation
International Collegiate
Programming Contest
啷ANs

A Color Game

Time limit: 3 seconds
Memory limit: 1024 megabytes

Problem Description

Playing games is fun. For programmers, however, playing games with programs is even more fun. Consider a simple single-user tabletop game as follows. Given a row of sticks, each of which is in one of the seven colors, red (R), green (G), blue (B), cyan (C), magenta (M), yellow (Y), and key (K), the goal of the game is to eliminate all the sticks by repeating the following rules.

- Consecutive sticks with the same color can be eliminated if the size of them is not less than m.
- The remaining sticks will move closer together.

For the case where the row is BBBRRRRRRGGGB and m is 3 , all the sticks can be successfully eliminated as the following steps:

1. BBBRRRRRRGGGB
2. BBBGGGB (By eliminating all red sticks)
3. BBBB (By eliminating all green sticks)
4. (By eliminating all blue sticks)

For the same row of sticks with $m=4$, however, it is no way to eliminate all the sticks.
Given a row of n sticks and the value of m, your task is to determine if it is possible to eliminate all the sticks.

Input Format

Each test case is given as a string that is the row of sticks and an integer m.

Output Format

Output Yes if it is possible to eliminate all the sticks. Otherwise, output No.

Technical Specification

- $0<n, m \leq 500$

Sample Input 1

```
BBBRRRRRRGGGB 3
```


Sample Output 1

Yes

Sample Input 2

```
BBBRRRRRRGGGB 4
```


Sample Output 2

No

International Collegiate
Programming Contest

Problem F
 Cable Protection

Time limit: 2 seconds
Memory limit: 1024 megabytes

Problem Description

A company ICPC (International Cable Protection Company) produces a cable protection tool that can be installed in a network switch to monitor whether all cable links connected to it are working properly. Because the protection tool would cause transmission delay, it is not suitable for installation on every switch.

Usually network topology consists of two parts: a backbone and several subnets. The switches on the backbone are linked as a ring structure and each backbone switch is treated as a root of a subnet in which the switches are linked as a tree structure. We call such topology as unicyclic topology. Figure 2 shows an example of a unicyclic topology.

Figure 2: An example of uncyclic topology.

Suppose there are n backbone switches and m subnet switches. The switches are numbered by integers from 0 to $m+n-1$. Backbone switches are numbered from 0 to $n-1$ in clockwise order and the subnet switches are numbered from n to $n+m-1$ where the index of each subnet switch is larger than the index of its parent in the rooted tree structure of the subnet it belongs. Figure 3 shows an example of switch numbering.

Figure 3: An example of switch numbering.

Please write a program for ICPC to decide the minimum number of switches selected for installing cable protection tools that can monitor all the cable links. Figure 4 shows an optimum solution (circled by ellipses) for the given network.

Figure 4: An optimum solution for the given network.

Input Format

The first line of the input file contains two integers n and m, separated by a space, indicating the numbers of backbone switches and subnet switches respectively. Each of the next $n+m$ lines consists of two integers, separated by a space, indicating the indices of the two end switches of a link.

Output Format

Output the minimum number of switches selected for installing cable protection tools that can monitor all the cable links.

Technical Specification

- $3 \leq n \leq 100000$
- $1 \leq m \leq 100000$

Sample Input 1

```
3}
0 1
1 2
0 2
1 3
24
```


Sample Output 1

Sample Input 2

4	11
0	1
0	3
0	4
0	5
1	2
1	6
2	3
2	9
3	12
6	7
6	8
9	10
10	11
12	13
12	14

Sample Output 2
5

Almost blank page

Problem G
 Graph Cards

Time limit: 30 seconds
Memory limit: 1024 megabytes

Problem Description

A deck of graph cards is placed on the table. Each graph card χ is decorated with an undirected simple graph G_{χ} so that G_{χ} is connected and G_{χ} has the same number of nodes and edges. Note that different graph cards may have different numbers of nodes. An example is depicted as follows.

We say two graph cards are identical if and only if the graphs associated with them, say $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, are isomorphism; that is, there exists a bijection f between the node sets V_{1} and V_{2} so that for every $x, y \in V_{1}$, edge $(x, y) \in E_{1}$ if and only if edge $(f(x), f(y)) \in E_{2}$. Our goal is to compute the number of distinct graph cards in the deck.

Input Format

The first line contains an integer t that indicates the number of test cases. For each test case, you are given a deck of graph cards. It begins with a line containing the number of graph cards $n>0$. Then, n lines follow. Each line represents a graph card associated with a graph G in the following format:

$$
\begin{array}{llllllll}
k & u_{1} & v_{1} & u_{2} & v_{2} & \cdots & u_{k} & v_{k}
\end{array}
$$

where $k>0$ denotes the number of nodes (also edges) in G and for each $i \in[1, k]\left(u_{i}, v_{i}\right)$ denotes an edge in G that connects nodes u_{i} and v_{i}. Note that the identifiers of nodes are integers in $[1, k]$.

Output Format

For each test case, output the number of distinct graph cards in the given deck on a line.

Technical Specification

- $0<t \leq 30$.
- $0<n, k \leq 10^{6}$.
- For each test case, the numbers of nodes in the n graph cards sum up to at most 10^{6}.

Sample Input 1

```
1
2
4
4}1
```


Sample Output 1

```
1
```


Sample Input 2

```
2
2
4
5
3
9
9
9
```


Sample Output 2

```
2
2
```


Problem H
 Optimization for UltraNet

Time limit: 3 seconds
Memory limit: 1024 megabytes

Problem Description

The UltraNet company provides network connectivity for all cities in a country. For a pair of cities, they are either directly connected or indirectly connected. A city i and another city j are directly connected if a cable with a symmetrical bandwidth of $b_{i, j}=b_{j, i}$ is wired between them. For two cities that are not directly connected, at least one path between the two cities exists. In the current UltraNet, more than one path is possibly available for a city pair.

The current UltraNet is perfectly working, while the maintenance fee of each cable is costly. Energy conservation is another concern. The energy consumption of a cable is proportional to its bandwidth. Therefore, the company has an optimization plan to reorganize the network with the policies in the following order:

1. The number of cables should be minimized without sacrificing the connectivity of the whole UltraNet. In other words, exactly one path between every city pair should be satisfied.
2. If there is more than one way to minimize the number of cables, the bottleneck of the whole network should be maximized. The bottleneck of a network is determined by the city pair with the narrowest bandwidth, and the bandwidth of a city pair $(i, j), b_{i, j}^{\prime}$, is determined by the cable with the narrowest bandwidth on the only path from i to j.
3. If there is still more than one way to meet the above two points, the total energy consumption of the network should be minimized. In other words, the sum of bandwidths of the remaining cables should be minimized.

Your task is to help UltraNet optimize the network and then output the sum of the bandwidths among all city pairs in the optimized network. For optimizing the following example, the three cables in dotted will be discarded. In the resulting network, the bottleneck is 3 , the sum of bandwidths of the remaining four cables is $6+3+8+4=21$, and the sum of the bandwidths among all city pairs is $\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} b_{i, j}^{\prime}=6+4+6+3+4+8+3+4+3+3=44$.

Input Format

Each test case begins with two integers n and m, denoting numbers of cities and cables, respectively. Then, m lines will follow for specifying the m cables. Each of the m lines contains three positive integers, i, j, and $b_{i, j}$, denoting that a cable with a bandwidth of $b_{i, j}$ directly connects the city pair (i, j), where the cities are numbered from 1 to n, and $i<j$ since $b_{i, j}=b_{j, i}$. No more than one cable will be available between every city pair in the current network. In addition, the bandwidths of all cables are distinct; no two cables have the same bandwidth rating.

Output Format

The output is a single integer that is the sum of the bandwidths of all city pairs in the optimized network.

Technical Specification

- $2 \leq n \leq 10000$
- $1 \leq m \leq 500000$
- $1 \leq i<j \leq n$
- $0<b_{i, j}<10^{7}$

Sample Input 1

```
3 3
1 2 5
1 3 6
2 3 8
```


Sample Output 1

20

Sample Input 2

```
5
126
1 3 10
14 12
2 4 8
2 5 3
344
4 2
```


Sample Output 2

Sample Input 3

$5 \quad 5$
251
122
234
135
246

Sample Output 3

Almost blank page

Problem I
 Critical Structures

Time limit: 3 seconds
Memory limit: 1024 megabytes

Problem Description

Intelligence Cloud Privacy Company (ICPC) is a world famous cloud service company that aims at developing secure and powerful cloud computing environments for users. Engineers in the ICPC construct a data center with n computing nodes, denoted by $1,2, \ldots, n$, and m communication links. We can model this data center as an undirected graph $G=(V, E)$, in which n vertices represent n computing nodes and an edge between Node i to Node j if there is a communication link between them; we also call i and j are two end-nodes of this link. In addition, for two arbitrary nodes i and j in G, there is at most one communication link between i and j, and there is no communication link between the same node.

A linear array structure in a data center G is a sequence of nodes $\left\langle v_{0}, v_{1}, \ldots, v_{k-1}\right\rangle$, where $k \geq 2$, such that any two consecutive v_{i-1} and v_{i} for $1 \leq i \leq k-1$ have a communication link, and v_{i} for $0 \leq i \leq k-1$ are all distinct. A ring structure is a sequence of nodes $\left\langle v_{0}, v_{1}, \ldots, v_{k-1}\right\rangle$, where $k \geq 4$, such that any two consecutive v_{i-1} and v_{i} for $1 \leq i \leq k-1$ have a communication link, $v_{0}=v_{k-1}$ and v_{i} for $0 \leq i \leq k-2$ are all distinct. A data center G is connected if there is a linear array between any two nodes; otherwise, it is disconnected. Using some elegant resource allocation algorithm, a research team of the ICPC needs to find the following critical structures for enhancing the privacy and security:

1. Critical node: a node in G whose removal disconnects G.
2. Critical link: a communication link in G whose removal disconnects G.
3. Critical component: a maximal set of communication links in G such that any two communication links in the set lie on a common ring.
4. Largest critical component: a critical component with the maximum number of communication links.

Given a connected data center G, your task is to write a computer program for computing the number of critical nodes, the number of critical links, and

$$
\begin{aligned}
\mu^{*} & =\frac{\text { the number of critical components }}{\text { the number of communication links in a largest critical component }} \\
& =\frac{p}{q}
\end{aligned}
$$

where $\frac{p}{q}$ is an irreducible form of μ^{*}.

Input Format

The first line of the input file contains an integer $L(L \leq 10)$ that indicates the number of test cases as follows. For each test case, the first line contains two integers (separated by a space) representing n and m. Then it is immediately followed by m lines, in which each line contains two integers that represent two end-nodes of a communication link; moreover, any two consecutive integers are separated by a space.

Output Format

The output contains one line for each test case. Each line contains four positive integers representing the number of critical nodes, the number of critical links, p, and q, where $\frac{p}{q}$ is an irreducible form of μ^{*}. Note that any two consecutive integers are separated by a space.

Technical Specification

- $3 \leq n \leq 1000$ for each test case.
- $n-1 \leq m \leq \frac{n(n-1)}{2}$.
- The sum of m in all L tests is smaller than 10^{6}.

Sample Input 1

```
1
6
1 2
2 3
34
4 5
5
6 1
```


Sample Output 1

```
0 0 1 6
```


Sample Input 2

```
1
6 7
1 2
2 3
3 1
4
5
64
14
```

2020 ICPC Asia Taipei-Hsinchu Regional

Sample Output 2

2111

Almost blank page

Problem J
 Puzzle Game

Time limit: 3 seconds
Memory limit: 1024 megabytes

Problem Description

For a string S, define $\operatorname{Adjacency}(S)$ to be the multiset of unordered pairs $(S[i], S[i+1]), i=$ $1,2, \ldots,|S|-1$, and define $\Sigma(S)$ to be the multiset of $S[i], i=1,2, \ldots,|S|$, where $|S|$ is the length of S and $S[i]$ is the i th character of S. For example, for $S=$ ABADDADCAB, we have Adjacency $(S)=\{\mathrm{AB}, \mathrm{BA}, \mathrm{AD}, \mathrm{DD}, \mathrm{DA}, \mathrm{AD}, \mathrm{DC}, \mathrm{CA}, \mathrm{AB}\}=\{\mathrm{AB}, \mathrm{AB}, \mathrm{AB}, \mathrm{AC}, \mathrm{AD}, \mathrm{AD}$, $\mathrm{AD}, \mathrm{CD}, \mathrm{DD}\}$ and $\Sigma(S)=\{\mathrm{A}, \mathrm{A}, \mathrm{A}, \mathrm{A}, \mathrm{B}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{D}, \mathrm{D}\}$.

John is playing a puzzle game, in which two strings P and $Q,|P|>|Q|$, over the character set $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$ are given and the goal is to insert characters into Q to obtain a string Q^{\prime} such that $\Sigma\left(Q^{\prime}\right)=\Sigma(P)$ and Adjacency $\left(Q^{\prime}\right)=\operatorname{Adjacency}(P)$. For example, given $P=\mathrm{ABADCAB}$ and $Q=\mathrm{CBB}$, by inserting A, $\mathrm{D}, \mathrm{A}, \mathrm{A}$ into Q, we can obtain a string $Q^{\prime}=\underline{\mathrm{ADCABAB}} \underline{\mathrm{AB}}$, in which inserted characters are underlined. It is easy to check that $\Sigma\left(Q^{\prime}\right)=\Sigma(P)=\{\mathrm{A}, \mathrm{A}, \mathrm{A}$, $\mathrm{B}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$ and $\operatorname{Adjacency}\left(Q^{\prime}\right)=\operatorname{Adjacency}(P)=\{\mathrm{AB}, \mathrm{AB}, \mathrm{AB}, \mathrm{AC}, \mathrm{AD}, \mathrm{CD}\}$. Thus, Q^{\prime} is a solution for $P=\mathrm{ABADCAB}$ and $Q=\mathrm{CBB}$. As another example, for $P=\mathrm{ABA}$ and $Q=$ CB , there is no solution.

Please write a program to help John. More specifically, given two strings P and Q, your program computes a string Q^{\prime} such that Q^{\prime} is obtained from Q by inserting some characters, $\Sigma\left(Q^{\prime}\right)=\Sigma(P)$, and $\operatorname{Adjacency}\left(Q^{\prime}\right)=\operatorname{Adjacency}(P)$.

Input Format

The first line of the input is an integer t, indicating that there are t test cases. Each test case consists of three lines: the first gives two integers, indicating the lengths $|P|$ and $|Q|$, the second gives the string P, and the third gives the string Q.

Output Format

For each case, output a solution string Q^{\prime}. If there are multiple solutions, you can output any of them. If there is no solution, output "NO".

Technical Specification

- The number of test cases is at most 15 .
- The length of $P,|P|$, is an integer between 2 and 10^{3}.
- The length of $Q,|Q|$, is an integer between 1 and 10^{3} and $|P|-18 \leq|Q| \leq|P|-1$.
- Both P and Q are over the character set $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$.

Sample Input 1

3
73
ABADCAB
CBB
117
ABACCDBADAC
AADCDAC
32
ABA
CB

Sample Output 1
ADCABAB
ABABDCCADAC
NO

International Collegiate
Programming Contest

Problem K
 Number with Bachelors

Time limit: 2 seconds
Memory limit: 1024 megabytes

Problem Description

Numbers without duplicated digits are considered bachelor numbers. For example, 123 is a bachelor number in decimal number system, and 9 af is a bachelor number in a hexadecimal number system. Both decimal number 101 and hexadecimal number aba are not bachelor numbers since there are duplicated digits in them. In this problem, you get two types of question. For one, given an interval, say, $[a, b]$ in a designated number system, decimal or hexadecimal, you have to figure out the total number of bachelor numbers in the interval, including a and b. For another, you are given a number, say, i in a designated number system you have to find the $i^{\text {th }}$ bachelor number in that number system.

Input Format

The first line of the input is a number n, which specifies the number of test cases. Each test case is a question and appears in one line. Each question starts with a letter 'd' or ' h ', indicating the question is in decimal domain or hexadecimal domain, respectively. For decimal domain, the following numbers are all represented in decimal. For hexadecimal domain, the following numbers are all represented in hexadecimal. Next to the first letter is a digit 0 or 1 , indicating the type of question to be asked. For type 0 question, two integers a and $b\left(0 \leq a \leq b<2^{64}\right)$ follow, which represent an interval. For type 1 question, an integer $1 \leq i<2^{64}$ follows, which represents an order.

Output Format

Output an integer for each question in its corresponding test case. For each question in decimal domain, the answer must be in decimal. For each question in hexadecimal domain, the answer must be in hexadecimal. For type 1 question, if the $i^{\text {th }}$ bachelor number does not exist, output a single letter '-' in its corresponding line.

Technical Specification

- $1 \leq n \leq 50000$.
- $0 \leq a \leq b<2^{64}$.
- $1 \leq i<2^{64}$.

Sample Input 1

```
6
d 0 10 20
h 0 10 1f
d 1 10
h 1 f
d 1 1000000000
h 1 fffffffffffffffff
```


Sample Output 1

10
f
9
e
-
-

Problem L
 Save lives or money

Time limit： 3 seconds
Memory limit： 1024 megabytes

Problem Description

Village＂Under The Sea＂is located inside a valley．There is a big river in front of the only entry of the village．This year，they encounter a flood that happens roughly once in a century． Because the government is lack of awareness，it is too late to evacuate the residents．The water will flow into the village soon．

Fortunately，this village has walls and gates that could block the water．But we cannot block all the water outside．Otherwise there will be too much water flowing through the river and destroy a nuclear plant in a neighborhood of the village，and brings incalculable damage to everyone．We need to allow some water flowing in，with a manageable way．

The walls and gates separate the village into many closed regions．Any two different regions could reach each other with exactly one path through the gates if we open all of them．To be clear，the sample 1 is a village consists of 1 region with 2 walls and 1 gate．The solid lines are walls and the dashed line is a gate in the figure below．And the sample 2 is another village consists of 5 regions with 5 walls and 5 gates．Given the estimated water volume，the government could decide to close some gates and leave the rest open．Let the floodwater destroy some regions and leave others safe．The shaded regions in the figures are destroyed regions of the best plans in the sample outputs．

A government official asks you to write a program to help them choosing which gates to open． They give you a list consisted of all the residents with the place they live and money they own． The government official wants you to find a way to save people with the most total wealth．You feel not good to treat rich and poor people differently．So you want to do something different in secret．You will give a plan which save the most people instead．In case there are different plans that save the same number of people，then you choose the one that saves the most money among them．
programming tools sponsor

Sample 2

Sample 3

Input Format

The first line contains 1 integer Area - the estimated area that the flood will destroy.
The second line contains 3 integers G, W, and R - the number of the gates, walls, and the residents.

Then G lines follow. Each line contains 4 integers $x_{1_{g}}, y_{1_{g}}, x_{2_{g}}, y_{2_{g}}$ that represent the coordinates of the two endpoints of a gate.

Then W lines follow. Each line contains 4 integers $x_{1_{w}}, y_{1_{w}}, x_{2_{w}}, y_{2_{w}}$ that represent the coordinates of the two endpoints of a wall.

Finally, there are R lines. Each line contains 3 integers x_{r}, y_{r}, and money $_{r}$ that represent the coordinates of a resident and the amount of money they owns. tools sponsor

Output Format

You should output 2 lines.
The first line has 1 real number and then 3 integers area, money, people, and gate_n, which represent the result of the plan. area is a real number rounding to the nearest tenth after the decimal point, which is the total area of destroyed regions. money is the total amount of money of the victims. people is the number of the victims. gate_n is the number of the opened gates.

The second line has gate_n integers which are the indices of the opened gates in an arbitrary order. Note that the gates are indexed from 1 to G.

If the Area in the input is larger than the village, the area you output should be the whole size of the village, the money should be the total amount of money of all the people in the village, and the people should be all the people in the village. And you should open all the gates.

If the Area in the input is no more than the village, the area you output should be equal to or larger than Area.

If there are multiple solutions that can save the same number of people, choose the one which loses less money. If there are still multiple solutions which lose the same amount of money, choose the one with smaller destroyed area. If there are still multiple solutions which destroy the same size of area, anyone will do.

Technical Specification

- $0<$ area, $G, W, R<5000$
- $-5000<x, y<5000$
- $0 \leq$ money <5000
- There is exactly one gate on the boundary of the village. The water will flood into the village through this gate. This gate should be opened in a workable plan.
- All the regions are simple polygons. They do not intersect themselves and have no holes.
- All the walls or gates will not intersect with each other. They will touch others only at the endpoints.
- Each endpoint will connect to at least two walls or gates. There is no hanging wall or gate.
- All the positions of the residents will locate in the interior of regions. They will not be outside of the village. And they will not sit right on a wall, a gate, nor a junction.

Sample Input 1

```
20
1 2 1
0 0 20 20
20 20 0 20
0 20 0 0
10 15 100
```


Sample Output 1

```
200.0 100 1 1
1
```

Sample Input 2

```
100
5 5
0 10 10 0
0 0 0 10
0 0 10 0
0 0 -10 0
0 0 -5 5
0 -10 -10 0
-10 0 -5 5
0 10 -5 5
10 0 0 -10
0}00~0-1
3 3 5
-5 3 1
-3 5 1
-3 -3 1
3 -3 10
```

Sample Output 2

```
100.0 15 2 2
1 3
```


Sample Input 3

```
33
3 17 3
-4 4 5 4
-4
3 -3 4 -3
0 1 0 -1
-4 3
-3 -2 -3 3
-2 2 -2 -1
2 1 1 2 -2
3 2 3 3-3
4 3 4 -3
-3 3 4 3
-2 2 3 2
-2 -1 0-1
0 1 2 1
-3 -2 2 -2
-4
-4 -4 5 5 -4
-4 -4 -4 -3
-4}
5 -4 5 4
1 0 5
-1 0
-1 0 1
```


Sample Output 3

```
48.0 5 1 2
1 3
```

Almost blank page

Problem M Keystroke

Time limit: 1 second
Memory limit: 1024 megabytes

Problem Description

You are designing a numeric keypad for numbers 1 to 4 , where each number is associated with a unique key. All of the keys are arranged as a 2×2 matrix, and there is a detection circuit beneath the keypad. When a key is pressed, the circuit will transmit the keystroke signals to the controller, which will receive its row number and column number. We can use a pair (row, column) to represent an event of a keystroke. Precisely speaking, when you press the key of number i where $i \in\{1,2,3,4\}$, the controller will receive the pair $(\lfloor(i-1) / 2\rfloor,(i-1)$ mod 2). For example, when you press key 3 , the controller gets $(1,0)$ as the keystroke signal. You would like to press several keys at the same time for some reason. When you do this, the controller can still receive their corresponding row/column numbers. However, their row numbers are mixed together, as well as the column numbers. For example, when you press keys 1 and 4 simultaneously, the controller would get row numbers $\{0,1\}$ and column numbers $\{0,1\}$, because key 1 emits $(0,0)$ and key 4 emits $(1,1)$. Another example is that when you pressed keys 1 and 2 simultaneously, the controller can only receive $(\{0\},\{0,1\})$ because key 1 emits $(0,0)$ and key 2 emits $(0,1)$ and their row numbers are the same. Notice that different keystroke combinations may lead to the same signal. Press keys 2 and 3 would get ($\{0,1\},\{0,1\}$) which is identical to press 1 and 4 . Press keys $1,2,3,4$ simultaneously would get the same result. Given a keystroke signal, which is in the (row, column)-paired form, please write a program to identify the total number of possible keystroke combinations that can lead to this signal.

Input Format

The first line of the input is a positive integer that specifies the number of test cases. Each test case follows immediately in the next line after the previous one. In each test case, its first line gives you two positive integers m and n. Its second line gives you m distinct integers that are the received row numbers. Its third line gives you n distinct integers that are the received column numbers. All numbers in the same line are space-delimited.

Output Format

Output the result in a single line for each test case.

Technical Specification

- There are at most 10 test cases.
- $1 \leq m, n \leq 2$.

Sample Input 1

2

21
01
0
12
1
01

Sample Output 1

1
1

Sample Input 2

```
2
2
0 1
O 1
1 1
1
1
```


Sample Output 2

7
1

